
Architecture for a Architecture for a
NextNext--Generation GCCGeneration GCC

Chris LattnerChris Lattner
sabresabre@@nondotnondot.org.org

Vikram AdveVikram Adve
vadvevadve@@cscs..uiucuiuc..eduedu

http://http://llvmllvm..cscs..uiucuiuc..eduedu//

The First Annual GCC Developers' SummitThe First Annual GCC Developers' Summit
May 26, 2003May 26, 2003

Chris Lattner – sabre@nondot.org

GCC Optimizer Problems:GCC Optimizer Problems:

??Scope of optimization is very limited:Scope of optimization is very limited:
??Most transformations work on functions…Most transformations work on functions…

??…and one is even limited to extended basic blocks…and one is even limited to extended basic blocks

??No No wholewhole--programprogram analyses or optimization!analyses or optimization!
?? e.g. alias analysis must be extremely conservativee.g. alias analysis must be extremely conservative

??Tree & RTL are bad for midTree & RTL are bad for mid--level opt’zns:level opt’zns:
??Tree is languageTree is language--specific and too specific and too highhigh--levellevel
??RTL is targetRTL is target--specific and too specific and too lowlow--levellevel

Chris Lattner – sabre@nondot.org

New Optimization Architecture:New Optimization Architecture:

??TransparentTransparent linklink--timetime optimization:optimization:
??Completely compatible with user Completely compatible with user makefilesmakefiles

??Enables sophisticated interprocedural Enables sophisticated interprocedural
analyses (IPA) and optimizations (IPO):analyses (IPA) and optimizations (IPO):
?? Increase the scope of analysis and optimizationIncrease the scope of analysis and optimization

??A new representation for optimization:A new representation for optimization:
??Typed, SSATyped, SSA--based, threebased, three--address codeaddress code
??Source language Source language andand targettarget--independentindependent

Chris Lattner – sabre@nondot.org

Example Applications for GCC:Example Applications for GCC:

??Fix inlining heuristics:Fix inlining heuristics:
??Allows whole program, bottomAllows whole program, bottom--up inliningup inlining
??Cost metric is more accurate than for treesCost metric is more accurate than for trees

?? Improved alias analysis:Improved alias analysis:
??Dramatically improved precisionDramatically improved precision
??Code motion, redundancy elimination gainsCode motion, redundancy elimination gains

??Work around lowWork around low--level ABI problems:level ABI problems:
??Tailor linkage of functions with IP informationTailor linkage of functions with IP information

Chris Lattner – sabre@nondot.org

Talk Outline:Talk Outline:

??HighHigh--Level Compiler ArchitectureLevel Compiler Architecture
??How does the proposed GCC work?How does the proposed GCC work?

??Code Representation DetailsCode Representation Details
??What does the representation look like?What does the representation look like?

??LLVM: An ImplementationLLVM: An Implementation
?? Implementation status and experiencesImplementation status and experiences

??ConclusionConclusion

Chris Lattner – sabre@nondot.org

Link TimeLink TimeCompile TimeCompile Time

Traditional GCC Organization:Traditional GCC Organization:
??Compile:Compile: source to target assemblysource to target assembly

??Assemble:Assemble: target assembly to object filetarget assembly to object file

??Link:Link: combine object files into an executablecombine object files into an executable

cc1

cc1plus

…

Source

as

as

as

Assembly

ld

Object
Files

Libs

Executable

Chris Lattner – sabre@nondot.org

Link TimeLink TimeCompile TimeCompile Time

Proposed GCC Architecture:Proposed GCC Architecture:
??Split the existing compiler in half:Split the existing compiler in half:
?? Parsing & semantic analysis at compile timeParsing & semantic analysis at compile time
?? Code generation at linkCode generation at link--timetime
?? Optimization at compileOptimization at compile--time time andand linklink--timetime

SourceSource

Mid-level
Optimize

GCC
Frontend Link

Mid-level
Optimize

GCC
Frontend

New RepresentationNew Representation

Whole-Program
Optimize

TreeTree

GCC
Backend

RTLRTL

ldas

AssemblyAssembly

LibsLibs

ExecutableExecutable

Chris Lattner – sabre@nondot.org

Why LinkWhy Link--Time?Time?

??Fits into normal compile & link model:Fits into normal compile & link model:
??User User makefilesmakefiles do not have to changedo not have to change
??Enabled if compiling at Enabled if compiling at --O4O4

??Missing code severely limits IPA & IPO:Missing code severely limits IPA & IPO:
??Must make conservative assumptions:Must make conservative assumptions:

??An unknown An unknown calleecallee can do just about anythingcan do just about anything

??At linkAt link--time, most of the program is available time, most of the program is available
for the first time!for the first time!

Chris Lattner – sabre@nondot.org

Making LinkMaking Link--Time Opt Feasible:Time Opt Feasible:

??Many commercial compilers support Many commercial compilers support
linklink--time optimization time optimization (Intel, SGI, HP, etc…):(Intel, SGI, HP, etc…):

??These export an ASTThese export an AST--level representation, level representation,
then perform then perform allall optimization at linkoptimization at link--timetime

??Our proposal:Our proposal:
??Optimize as much at Optimize as much at compilecompile--timetime as possibleas possible
??Perform aggressive IPA/IPO at linkPerform aggressive IPA/IPO at link--timetime
??Allows mixed object files in native & IR formatAllows mixed object files in native & IR format

Chris Lattner – sabre@nondot.org

No major GCC changes:No major GCC changes:

??New GCC components:New GCC components:
??New expander from Tree to IRNew expander from Tree to IR
??New expander from IR to RTLNew expander from IR to RTL
??Must extend the compiler driverMust extend the compiler driver

??Existing code path can be retained:Existing code path can be retained:
??When disabled, does not effect performanceWhen disabled, does not effect performance
??When When --O2O2 is enabled, use new midis enabled, use new mid--level level

optimizations a functionoptimizations a function-- (or unit(or unit--) at) at--aa--timetime

Chris Lattner – sabre@nondot.org

Talk Outline:Talk Outline:

??HighHigh--Level Compiler ArchitectureLevel Compiler Architecture
??How does the proposed GCC work?How does the proposed GCC work?

??Code Representation DetailsCode Representation Details
??What does the representation look like?What does the representation look like?

??LLVM: An ImplementationLLVM: An Implementation
?? Implementation status and experiencesImplementation status and experiences

??ConclusionConclusion

Chris Lattner – sabre@nondot.org

Code Representation Properties:Code Representation Properties:

??LowLow--Level, SSA based, and “RISCLevel, SSA based, and “RISC--like”:like”:
??SSASSA--based based == efficientefficient, sparse, global opt’zns, sparse, global opt’zns
??Orthogonal, as few operations as possibleOrthogonal, as few operations as possible
??Simple, well defined semantics (documented)Simple, well defined semantics (documented)
??Simplify development of optimizations:Simplify development of optimizations:

??Development & Development & maintenancemaintenance is very costly!is very costly!

??Concrete details come from LLVM:Concrete details come from LLVM:
??More details about LLVM come later in talkMore details about LLVM come later in talk

Chris Lattner – sabre@nondot.org

Code Example:Code Example:
structstruct pair {pair {

intint X; float Y;X; float Y;
};};
void Sum(float *, void Sum(float *, structstruct pair *P);pair *P);

intint Process(float *A, Process(float *A, intint N) {N) {
intint i;i;
structstruct pair P = {0,0};pair P = {0,0};
for (i = 0; i < N; ++i) {for (i = 0; i < N; ++i) {
Sum(A, &P);Sum(A, &P);
A++; } A++; }

return P.X;return P.X;
} }

%pair = type %pair = type { { intint, float }, float }
declaredeclare voidvoid %Sum(%Sum(float*float*, , %pair*%pair*))

intint %Process(%Process(float*float* %A.0, %A.0, intint %N) {%N) {
entry:entry:

%P = %P = allocaalloca %pair%pair
%tmp.0 = %tmp.0 = getelementptrgetelementptr %pair*%pair* %P, %P, longlong 0, 0, ubyteubyte 00
storestore intint 0, 0, intint** %tmp.0%tmp.0
%tmp.1 = %tmp.1 = getelementptrgetelementptr %pair*%pair* %P, %P, longlong 0, 0, ubyteubyte 11
storestore floatfloat 0.0, 0.0, float*float* %tmp.1%tmp.1
%tmp.3 = %tmp.3 = setltsetlt intint 0, %N0, %N
brbr boolbool %tmp.3, %tmp.3, labellabel %loop, %loop, labellabel %return%return

loop:loop:
%i.1 = %i.1 = phiphi intint [0, %entry], [%i.2, %loop][0, %entry], [%i.2, %loop]
%A.1 = %A.1 = phiphi float*float* [%A.0, %entry],[%A.0, %entry],

[%A.2, %loop][%A.2, %loop]
callcall voidvoid %Sum(%Sum(float*float* %A.1, %A.1, %pair*%pair* %P)%P)
%A.2 = %A.2 = getelementptrgetelementptr float*float* %A.1, %A.1, longlong 11
%i.2 = %i.2 = addadd intint %i.1, 1%i.1, 1
%tmp.4 = %tmp.4 = setltsetlt intint %i.1, %N%i.1, %N
brbr boolbool %tmp.4, %tmp.4, labellabel %loop, %loop, labellabel %return%return

return:return:
%tmp.5 = %tmp.5 = loadload intint** %tmp.0%tmp.0
retret intint %tmp.5%tmp.5

}}

Simple type example, and
example external function

Explicit allocation of stack
space, clear distinction
between memory and

registers

High-level operations are
lowered to simple

operations

SSA representation is
explicit in the code

Control flow is lowered to
use explicit branches

Typed pointer arithmetic for
explicit access to memory

tmp.0 = &P[0].0

A.2 = &A.1[1]

Chris Lattner – sabre@nondot.org

StronglyStrongly--Typed Representation:Typed Representation:

??Key challenge:Key challenge:
??Support Support highhigh--level level analyses & transformationsanalyses & transformations
?? ... on a ... on a lowlow--levellevel representation!representation!

??Types provide this highTypes provide this high--level info:level info:
??Enables aggressive analyses and opt’zns:Enables aggressive analyses and opt’zns:

?? e.g. automatic pool allocation, safety checking, e.g. automatic pool allocation, safety checking,
data structure analysis, etc…data structure analysis, etc…

??Every computed value has a typeEvery computed value has a type

??Type system is languageType system is language--neutral!neutral!

Chris Lattner – sabre@nondot.org

Type System Details:Type System Details:

??Simple lang. independent type system:Simple lang. independent type system:
??Primitives: void, Primitives: void, boolbool, float, , float, ushortushort, opaque, …, opaque, …
??Derived: pointer, array, structure, functionDerived: pointer, array, structure, function
??No highNo high--level types!level types!

??Source language types are lowered:Source language types are lowered:
??e.g. e.g. T& T& ?? T*T*

??e.g. e.g. class T : S { class T : S { intint X; } X; } ?? { S, { S, intint }}

??Type system Type system cancan be “broken” with castsbe “broken” with casts

Chris Lattner – sabre@nondot.org

Full Featured Language:Full Featured Language:

??Should contain Should contain allall info about the code:info about the code:
?? functions,functions, globalsglobals, inline, inline asmasm, etc…, etc…
??Should be possible to serialize and Should be possible to serialize and

deserializedeserialize a program at any timea program at any time

??Language has binary and text formats:Language has binary and text formats:
??Both directly correspond to inBoth directly correspond to in--memory IRmemory IR
??Text is for humans, binary is faster to parseText is for humans, binary is faster to parse
??Makes debugging and understanding easier!Makes debugging and understanding easier!

Chris Lattner – sabre@nondot.org

Talk Outline:Talk Outline:

??HighHigh--Level Compiler ArchitectureLevel Compiler Architecture
??How does the proposed GCC work?How does the proposed GCC work?

??Code Representation DetailsCode Representation Details
??What does the representation look like?What does the representation look like?

??LLVM: An ImplementationLLVM: An Implementation
?? Implementation status and experiencesImplementation status and experiences

??ConclusionConclusion

Chris Lattner – sabre@nondot.org

LLVM: LowLLVM: Low--Level Virtual MachineLevel Virtual Machine

??A research compiler infrastructure:A research compiler infrastructure:
??Provides a solid foundation for researchProvides a solid foundation for research
?? In use both inside and outside of UIUC:In use both inside and outside of UIUC:

??Compilers, architecture, & dynamic compilationCompilers, architecture, & dynamic compilation
?? Two advanced compilers coursesTwo advanced compilers courses

??Development Progress:Development Progress:
??2.5 years old, ~130K lines of C++ code2.5 years old, ~130K lines of C++ code
??First public release is coming soon:First public release is coming soon:

?? 1.0 release this summer, prereleases via email1.0 release this summer, prereleases via email

Chris Lattner – sabre@nondot.org

LLVM Implementation Status:LLVM Implementation Status:
??Most of this proposal is implemented:Most of this proposal is implemented:
??Tree Tree ?? LLVM expander (for C and C++)LLVM expander (for C and C++)
??Linker, optimizer, textual & bytecode formatsLinker, optimizer, textual & bytecode formats
??MidMid--level optimizer is sequence of level optimizer is sequence of 22 passes22 passes

??All sorts of analyses & optimizations:All sorts of analyses & optimizations:
??Scalar: ADCE, SCCP, register promotion, …Scalar: ADCE, SCCP, register promotion, …
??CFG: dominators, natural loops, profiling, …CFG: dominators, natural loops, profiling, …
?? IP: alias analysis, automatic pool allocation, IP: alias analysis, automatic pool allocation,

interprocedural mod/ref, safety verification…interprocedural mod/ref, safety verification…

Chris Lattner – sabre@nondot.org

Other LLVM Infrastructure:Other LLVM Infrastructure:

??Direct execution of LLVM bytecode:Direct execution of LLVM bytecode:
??A portable interpreter, a JustA portable interpreter, a Just--InIn--Time compilerTime compiler

??Several custom (nonSeveral custom (non--GCC) backends:GCC) backends:
??SparcSparc--V9, IAV9, IA--32, C backend32, C backend

??The LLVM “Pass Manager”:The LLVM “Pass Manager”:
??Declarative system for tracking analysis and Declarative system for tracking analysis and

optimizer pass dependenciesoptimizer pass dependencies
??Assists building tools out of a series of passesAssists building tools out of a series of passes

Chris Lattner – sabre@nondot.org

LLVM Development Tools:LLVM Development Tools:

?? Invariant checking:Invariant checking:
??Automatic IR memory leak detectionAutomatic IR memory leak detection
??A verifier pass which checks for consistencyA verifier pass which checks for consistency

??Definitions dominate all uses, etc…Definitions dominate all uses, etc…

??BugpointBugpoint -- automaticautomatic testtest--case reducer:case reducer:
??Automatically reduces test cases to a small Automatically reduces test cases to a small

example which still causes a problemexample which still causes a problem
??Can debug Can debug miscompilationsmiscompilations or pass crashesor pass crashes

Chris Lattner – sabre@nondot.org

LLVM is extremely fast:LLVM is extremely fast:

??EndEnd--toto--end performance isn’t great yet:end performance isn’t great yet:
??Not yet integrated into GCC properNot yet integrated into GCC proper

??But transformations are very fast:But transformations are very fast:
??Some example numbers from the paper:Some example numbers from the paper:

Chris Lattner – sabre@nondot.org

Conclusion:Conclusion:

??Contributions:Contributions:
??A realistic architecture for an aggressive linkA realistic architecture for an aggressive link--

time optimizertime optimizer
??A representation for efficient and powerful A representation for efficient and powerful

analyses and transformationsanalyses and transformations

??LLVM is available…LLVM is available…
??… and we appreciate your feedback!… and we appreciate your feedback!

http://http://llvmllvm..cscs..uiucuiuc..eduedu

