The LLVM Compiler

Framework and Infrastructure

Chris Lattner Vikram Adve
latther@cs.uiuc.edu vadve@cs.uiuc.edu

http://llvm.cs.uiuc.edu/

LCPC Tutorial: September 22, 2004

Acknowledgements

UIUC Contributors: External Contributors:
Tanya Brethour Henrik Bach
Misha Brukman Nate Begeman
Cameron Buschardt Jeff Cohen
John Criswell Paolo Invernizzi
Alkis Evlogimenos Brad Jones
Brian Gaeke Vladimir Merzliakov
Ruchira Sasanka Vladimir Prus
Anand Shukla Reid Spencer
Bill Wendling

Funding:

This work is sponsored by the NSF Next Generation Software program through
grants EIA-0093426 (an NSF CAREER award) and EIA-0103756. It is also supported
in part by the NSF Operating Systems and Compilers program (grant #CCR-
9988482), the NSF Embedded Systems program (grant #CCR-0209202), the
MARCO/DARPA Gigascale Systems Research Center (GSRC), IBM through the
DARPA-funded PERCS project, and the Motorola University Partnerships in
Research program.

http://llvm.cs.uiuc.edu/ Chris Lattner — lattner@cs.uiuc.edu

LLVM Compiler System

m The LLVM Compiler Infrastructure
Provides reusable components for building compilers
Reduce the time/cost to build a new compiler
Build static compilers, JITs, trace-based optimizers, ...

m The LLVM Compiler Framework

End-to-end compilers using the LLVM infrastructure

C and C++ are robust and aggressive:
m Java, Scheme and others are in development

Emit C code or native code for X86, Sparc, PowerPC

http://llvm.cs.uiuc.edu/ Chris Lattner — lattner@cs.uiuc.edu

Three primary LLVM components

m The LLVM Virtual Instruction Set

The common language- and target-independent IR
Internal (IR) and external (persistent) representation

m A collection of well-integrated libraries

Analyses, optimizations, code generators, JIT
compiler, garbage collection support, profiling, ...

m A collection of tools built from the libraries

Assemblers, automatic debugger, linker, code
generator, compiler driver, modular optimizer, ...

http://llvm.cs.uiuc.edu/ Chris Lattner — lattner@cs.uiuc.edu

Tutorial Overview

Introduction to the running example

m LLVM C/C++ Compiler Overview
High-level view of an example LLVM compiler

m The LLVM Virtual Instruction Set
IR overview and type-system

m LLVM C++ IR and important API's
Basics, PassManager, dataflow, ArgPromaotion
m Important LLVM Tools
opt, code generator, JIT, test suite, bugpoint

m Example applications of LLVM

http://llvm.cs.uiuc.edu/ Chris Lattner — lattner@cs.uiuc.edu

Running example: arg promotion

Consider use of by-reference parameters:
Int callee(const int &X) { Int callee(const int *X) {
return X+1; :{> return *X+1; // memory load
} }
int caller() { compiles to | Int caller() {
return callee(4); Int tmp; // stack object
} tmp = 4; / memory store
return callee(&tmp);
We want: !
Int callee(int X .. :
return >§+1; " VEliminated load in callee
) v Eliminated store in caller
int caller() {

return callee(4); | v'Eliminated stack slot for ‘tmp’

}

http://llvm.cs.uiuc.edu/ Chris Lattner — lattner@cs.uiuc.edu

Why Is this hard?

m Requires interprocedural analysis:
Must change the prototype of the callee
Must update all call sites = we must know all callers
What about callers outside the translation unit?
m Requires alias analysis:
Reference could alias other pointers in callee

Must know that loaded value doesn’t change from
function entry to the load

Must know the pointer is not being stored through
m Reference might not be to a stack object!

http://llvm.cs.uiuc.edu/ Chris Lattner — lattner@cs.uiuc.edu

Tutorial Overview

Introduction to the running example

m LLVM C/C++ Compiler Overview
High-level view of an example LLVM compiler

m The LLVM Virtual Instruction Set
IR overview and type-system

m LLVM C++ IR and important API's
Basics, PassManager, dataflow, ArgPromaotion
m Important LLVM Tools
opt, code generator, JIT, test suite, bugpoint

m Example applications of LLVM

http://llvm.cs.uiuc.edu/ Chris Lattner — lattner@cs.uiuc.edu

The LLVM C/C++ Compiler

m From the high level, it Is a standard compiler:

Compatible with standard makefiles
Uses GCC 3.4 C and C++ parser

C file —|llvmgcc —’.ofile\

llvm linker | — executable

: L
C++ file = | llvmg++ |~ .o file

Compile Time Link Time

m Distinguishing features:
Uses LLVM optimizers, not GCC optimizers
.0 files contain LLVM IR/bytecode, not machine code
Executable can be bytecode (JIT'd) or machine code

http://llvm.cs.uiuc.edu/ Chris Lattner — lattner@cs.uiuc.edu

Looking into events at compile-time

C file ™| llvmgcc | — .o file C++ file | llvmg++ | — .o file

E R
Lowers

Dead Global Elimination, IP Constant Propagation, Dead
Argument Elimination, Inlining, Reassociation, LICM, Loop
Opts, Memory Promotion, Dead Store Elimination, ADCE, ...

http://llvm.cs.uiuc.edu/ Chris Lattner — lattner@cs.uiuc.edu

Looking into events at link-time

.0 file\

L
.0 flle

20 LLVM Analysis &
Optimization Passes

llvm linker | — executable

—

» bc file for LLVM JIT

Native executable

Native

Optionally “internalizes”: executable
marks most functions as “llc —march=c” "gcc”

internal, to improve IPO _ -

Y
Link in native .o files
Perfect place for argument |‘7 and libraries here
promotion optimization!

http://llvm.cs.uiuc.edu/

Chris Lattner — lattner@cs.uiuc.edu

Goals of the compiler design

m Analyze and optimize as early as possible:
Compile-time opts reduce modify-rebuild-execute cycle
Compile-time optimizations reduce work at link-time
(by shrinking the program)

m All IPA/IPO make an open-world assumption
Thus, they all work on libraries and at compile-time
“Internalize” pass enables “whole program” optzn

m One IR (without lowering) for analysis & optzn

Compile-time optzns can be run at link-time too!
The same IR is used as input to the JIT
IR design is the key to these goals!

http://llvm.cs.uiuc.edu/ Chris Lattner — lattner@cs.uiuc.edu

Tutorial Overview

Introduction to the running example

m LLVM C/C++ Compiler Overview
High-level view of an example LLVM compiler
m The LLVM Virtual Instruction Set
IR overview and type-system
m LLVM C++ IR and important API's
Basics, PassManager, dataflow, ArgPromaotion
m Important LLVM Tools
opt, code generator, JIT, test suite, bugpoint

m Example applications of LLVM

http://llvm.cs.uiuc.edu/ Chris Lattner — lattner@cs.uiuc.edu

Goals of LLVM IR

m Easy to produce, understand, and define!

m Language- and Target-Independent

AST-level IR (e.g. ANDF, UNCOL) is not very feasible
= Every analysis/xform must know about ‘all’ languages

m One IR for analysis and optimization

IR must be able to support aggressive IPO, loop opts,
scalar opts, ... high- and low-level optimization!

m Optimize as much as early as possible
Can’t postpone everything until link or runtime
No lowering in the IR!

http://llvm.cs.uiuc.edu/ Chris Lattner — lattner@cs.uiuc.edu

LLVM Instruction Set Overview #1

m Low-level and target-independent semantics
RISC-like three address code
Infinite virtual register set in SSA form
Simple, low-level control flow constructs
Load/store instructions with typed-pointers

m IR has text, binary, and in-memory forms

| oop:
% .1 =phi int [O, b0], [%.2, % oop]
%A Addr = getelenentptr float* %A, Iint %.1
call void %sun(fl oat %A Addr, %pair* %)
) %.2 = add int %.1, 1
surf(&A1, &P); %np.4 =setlt int %.1, %N
br bool % np.4, |abel % oop, |abel %outl oop

http://llvm.cs.uiuc.edu/ Chris Lattner — lattner@cs.uiuc.edu

LLVM Instruction Set Overview #2

m High-level information exposed in the code
Explicit dataflow through SSA form
Explicit control-flow graph (even for exceptions)
Explicit language-independent type-information
Explicit typed pointer arithmetic
m Preserve array subscript and structure indexing

| oop:
% .1 =phi int [O, b0], [%.2, % oop]
%A Addr = getelenentptr float* %A, Iint %.1
call void %sun(fl oat %A Addr, %pair* %)
) %.2 = add int %.1, 1
surf(&A1, &P); %np.4 =setlt int %.1, %N
br bool % np.4, |abel % oop, |abel %outl oop

http://llvm.cs.uiuc.edu/ Chris Lattner — lattner@cs.uiuc.edu

LLVM Type System Details

m The entire type system consists of:
Primitives: void, bool, float, ushort, opaque, ...
Derived: pointer, array, structure, function
No high-level types: type-system is language neutral!

m Type system allows arbitrary casts:
Allows expressing weakly-typed languages, like C
Front-ends can implement safe languages
Also easy to define a type-safe subset of LLVM

See also: docs/ LangRef . ht

http://llvm.cs.uiuc.edu/ Chris Lattner — lattner@cs.uiuc.edu

Lowering source-level types to LLVM

m Source language types are lowered:

Rich type systems expanded to simple type system

Implicit & abstract types are made explicit & concrete
m Examples of lowering:

References turn into pointers: 7& > T*

Complex numbers: conmplex float - { float, float }

Bitfields: struct X { int Y:4; int Z2; } > { int}

Inheritance: class T: S{ int XX } 2> { S, int }

Methods: class T { void foo(): } > void foo(T*)

m Same idea as lowering to machine code

http://llvm.cs.uiuc.edu/ Chris Lattner — lattner@cs.uiuc.edu

LLVM Program Structure

m Module contains Functions/GlobalVariables
Module is unit of compilation/analysis/optimization

m Function contains BasicBlocks/Arguments
Functions roughly correspond to functions in C

m BasicBlock contains list of instructions

Each block ends in a control flow instruction

m Instruction Is opcode + vector of operands
All operands have types
Instruction result is typed

http://llvm.cs.uiuc.edu/ Chris Lattner — lattner@cs.uiuc.edu

Our example,

compiled to LLVM

}

Int callee(const int *X) {

}

Int caller() {
Int T; /| on stack
T =4; /| store

return *X+1; // load

return callee(&T);

Linker “internalizes”
most functions in most
cases

Internal int %callee(int* %X) {
%tmp.1 = load int* %X
%tmp.2 = add int %tmp.1, 1
ret int %tmp.2

}

Int %caller() {

%T = allocaint

store int 4, int* %T

%tmp.3 = call int %callee(int* %T)
ret int %tmp.3

}

http://llvm.cs.uiuc.edu/

Chris Lattner — lattner@cs.uiuc.edu

Our example, desired transformation

Internal int %callee(int* %X) {
%tmp.1 = load int* %X
%tmp.2 = add int %tmp.1, 1
ret int %tmp.2

}

Int %caller() {

%T = allocaint

store int 4, int* %T

%tmp.3 = call int %callee(int* %T)
ret int %tmp.3

}

Internal int %callee(int %X.val) {
%tmp.2 = add int %X.val, 1
ret int %tmp.2
}
Int %caller() {
%T = allocaint
store int 4, int* %T
%imp.1l =load int* %T
%tmp.3 = call int %callee(%tmp.1)
ret int %tmp.3

Other transformation
(-mem2req) cleans up
the rest

http://llvm.cs.uiuc.edu/

o

Int %caller() {
%tmp.3 = call int %callee(int 4)
ret int %tmp.3

}

Chris Lattner — lattner@cs.uiuc.edu

Tutorial Overview

Introduction to the running example

m LLVM C/C++ Compiler Overview
High-level view of an example LLVM compiler

m The LLVM Virtual Instruction Set
IR overview and type-system

m LLVM C++ IR and important API's
Basics, PassManager, dataflow, ArgPromaotion
m Important LLVM Tools
opt, code generator, JIT, test suite, bugpoint

m Example applications of LLVM

http://llvm.cs.uiuc.edu/ Chris Lattner — lattner@cs.uiuc.edu

LLVM Coding Basics

m Written in modern C++, uses the STL.:
Particularly the vector, set, and map classes

m LLVM IR is almost all doubly-linked lists:

Module contains lists of Functions & GlobalVariables
Function contains lists of BasicBlocks & Arguments
BasicBlock contains list of Instructions

m Linked lists are traversed with iterators:

Function *M = ...
for (Function::iterator I = M>begin(); | !'= M>end(); ++l) {
Basi cBl ock &BB = *|;

See also: docs/ProgrammersManual.html

http://llvm.cs.uiuc.edu/ Chris Lattner — lattner@cs.uiuc.edu

LLVM Pass Manager

m Compiler is organized as a series of ‘passes’.
Each pass is one analysis or transformation

m Four types of Pass:

ModulePass: general interprocedural pass
CallGraphSCCPass: bottom-up on the call graph
FunctionPass: process a function at a time
BasicBlockPass: process a basic block at a time

m Constraints imposed (e.g. FunctionPass):
FunctionPass can only look at “current function”
Cannot maintain state across functions

See also: docs/ Wi ti ngAnLLVMPass. ht i

http://llvm.cs.uiuc.edu/ Chris Lattner — lattner@cs.uiuc.edu

Services provided by PassManager

m Optimization of pass execution:
Process a function at a time instead of a pass at a time

Example: If F, G, H are three functions in input pgm:
*FFFFGGGGHHHH" not “FGHFGHFGHFGH"

Process functions in parallel on an SMP (future work)
m Declarative dependency management:

Automatically fulfill and manage analysis pass lifetimes

Share analyses between passes when safe:
= e.g. “DominatorSet live unless pass modifies CFG”

m Avoid boilerplate for traversal of program

See also: docs/ Wi ti ngAnLLVMPass. ht i

http://llvm.cs.uiuc.edu/ Chris Lattner — lattner@cs.uiuc.edu

Pass Manager + Arg Promotion #1/2

m Arg Promotion is a CallGraphSCCPass:

Naturally operates bottom-up on the CallGraph
= Bubble pointers from callees out to callers

24: #include "Ilvm Cal | G aphSCCPass. h"
47: struct SinpleArgPronotion : public Call GaphSCCPass {

m Arg Promotion requires AliasAnalysis info

To prove safety of transformation
m Works with any alias analysis algorithm though

48: virtual void get Anal ysi sUsage(Anal ysi sUsage &AU) const {

AU. addRequi r ed<Al i asAnal ysi s>(); [l Get aliases
AU. addRequi r ed<Tar get Dat a>() ; /] Get data | ayout
Cal | G aphSCCPass: : get Anal ysi sUsage(AU); // Get Call Graph

}

http://llvm.cs.uiuc.edu/ Chris Lattner — lattner@cs.uiuc.edu

Pass Manager + Arg Promotion #2/2

m Finally, implement r unOnSCC (line 65):

bool Si npl eArgPronoti on: :
runOnSCC(const std::vector<Call GaphNode*> &SCC) ({

bool Changed = fal se, Local Change;
do { /| lterate until we stop promoting from this SCC.

Local Change = fal se;
/| Attempt to promote arguments from all functions in this SCC.

for (unsigned i =0, e = SCC.size(); | = e;, ++i)
Local Change | = Pronot eArgunent s(SCCi]);
Changed | = Local Change; // Remember that we changed something.
} while (Local Change);
return Changed, /'l Passes return true if something changed.

}

static int foo(int **P) { E static int foo(int P_val val val) {

return ***p; return P_val val val;

http://llvm.cs.uiuc.edu/

Chris Lattner — lattner@cs.uiuc.edu

LLVM Dataflow Analysis

mLLVMIR IS In SSA form:

use-def and def-use chains are always available
All objects have user/use info, even functions

m Control Flow Graph is always available:
Exposed as BasicBlock predecessor/successor lists
Many generic graph algorithms usable with the CFG

m Higher-level info implemented as passes:
Dominators, CallGraph, induction vars, aliasing, GVN, ...

See also: docs/ Progr ammer sManual . ht ni

http://llvm.cs.uiuc.edu/ Chris Lattner — lattner@cs.uiuc.edu

Arg Promotion: safety check #1/4

#1: Function must be “internal” (aka “static”)

88: if ('F || !'F->haslnternal Linkage()) return fal se;

#2: Make sure address of F is not taken
In LLVM, check that there are only direct calls using F

99:. for (Value::use iterator U = F->use_begin();
U !'= F->use_end(); ++Ul) {
Call Site CS = CallSite::get(*Ul);
If (!'CS.getlnstruction()) // "Taking the address" of F.
return fal se;

#3: Check to see if any args are promotable:

114: for (unsigned i = 0; i != PointerArgs.size(); ++i)
I f ('isSaf eToPronot eAr gunent (Poi nterArgs[i]))
Poi nt er Args. erase(Poi nter Args. begi n() +i) ;
i f (PointerArgs.enpty()) return false; // noargs promotable

http://llvm.cs.uiuc.edu/ Chris Lattner — lattner@cs.uiuc.edu

Arg Promotion: safety check #2/4

#4: Argument pointer can only be loaded from:
No stores through argument pointer allowed!

/1 Loop over all uses of the argument (use-def chains).
138: for (Value::use iterator U = Arg->use_begin();
U !'= Arg->use_end(); ++Ul) {
/1 If the user is a load:
I f (Loadlnst *LI = dyn_cast<Loadlnst>(*Ul)) {
/1 Don't modify volatile loads.

If (LI->sVolatile()) return fal se;
Loads. push_back(LI);
} else {

return false: // Not aload.

http://llvm.cs.uiuc.edu/ Chris Lattner — lattner@cs.uiuc.edu

Arg Promotion: safety check #3/4

#5: Value of “*P” must not change in the BB
We move load out to the caller, value cannot change!

‘ !

lgzie] P
Il Get AliasAnalysis inplenentation fromthe pass manager.
156: AliasAnal ysis &AA = get Anal ysi s<Al i asAnal ysi s>();

[/ Ensure *P is not nodified fromstart of block to |oad
169: if (AA canlnstructionRangeMdi fy(BB->front(), *Load,
Arg, LoadSi ze))
return false; [/ Pointer is invalidated!

See also: docs/ Al i asAnal ysi s. ht i

http://llvm.cs.uiuc.edu/ Chris Lattner — lattner@cs.uiuc.edu

Arg Promotion: safety check #4/4

#6: “*P” cannot change from Fn entry to BB

175: for (pred_iterator Pl = pred begin(BB), E = pred _end(BB);
Pl '=E ++Pl) /| Loop over predecessors of BB.
/| Check each block from BB to entry (DF search on inverse graph).
for (idf _iterator<BasicBlock*> | = idf_begin(*Pl);
| '= idf _end(*Pl); ++I)
/' Might *P be modified in this basic block?
I f (AA. canBasi cBl ockModi fy(**1, Arg, LoadSize))
return false;

http://llvm.cs.uiuc.edu/ Chris Lattner — lattner@cs.uiuc.edu

Arg Promotion: xform outline #1/4

#1: Make prototype with new arg types: #197
Basically just replaces ‘int*’ with ‘int’ in prototype
#2: Create function with new prototype:

214: Function *NF = new Function(NFTy, F->getLinkage(),
F- >get Nane()) ;
F- >get Parent () ->get FunctionList().insert(F, NF);

#3: Change all callers of F to call NF:

/[If there are uses of F, then calls to it remain.
221: while (!F->use_enpty()) {
/] Get a caller of F.
Call Site CS = Call Site::get(F->use_back());

http://llvm.cs.uiuc.edu/ Chris Lattner — lattner@cs.uiuc.edu

Arg Promotion: xform outline #2/4

#4:. For each caller, add loads, determine args
Loop over the args, inserting the loads in the caller

220: std::vector<Val ue*> Args;

226: Call Site::arg _iterator Al = CS.arg_begin();

for (Function::aiterator I = F->abegin(); | !'= F->aend();
++1, ++Al)
i f (!ArgsToPronote. count(l)) /1 Unmodified argument.
Ar gs. push_back(*Al);
el se { /'l Insert the load before the call.
Loadl nst *LI = new Loadlnst(*Al, (*Al)->getNane()+".val",

Call); // Insertion point
Args. push_back(Ll);

}

http://llvm.cs.uiuc.edu/ Chris Lattner — lattner@cs.uiuc.edu

Arg Promotion: xform outline #3/4

#5: Replace the call site of F with call of NF

/| Create the call to NF with the adjusted arguments.
242: Instruction *New = new Calllnst(NF, Args, "", Call);

/1 If the return value of the old call was used, use the retval of the new call.
I f (!Call->use_enpty())
Cal | ->repl aceAl | UsesWt h(New) ;

/| Finally, remove the old call from the program, reducing the use-count of F.
Cal |l ->get Parent()->getlnstList().erase(Call);

#6: Move code from old function to new Fn

259: NF->get Basi cBl ockLi st ().splice(NF >begin(),
F- >get Basi cBl ockLi st());

http://llvm.cs.uiuc.edu/ Chris Lattner — lattner@cs.uiuc.edu

Arg Promotion: xform outline #4/4

#7: Change users of F's arguments to use NF’s

264: for (Function::aiterator | = F->abegin(), |12 = NF->abegin();
| '= F->aend(); ++I, ++I2)
I f (!'ArgsToPronote.count(1)) { // Not promoting this arg?

| - >repl aceAl | UsesWth(l2); /' | Use new arg, not old arg.
} else {
while (!l->use empty()) { /'] Only users can be loads.
Loadl nst *LI = cast <Loadl nst >(I->use_back());

LI ->repl aceAl |l UsesWth(l2);
LI ->get Parent ()->getlnstList().erase(Ll);

}
}

#8: Delete old function:

286: F->get Parent ()->get FunctionList().erase(F);

http://llvm.cs.uiuc.edu/ Chris Lattner — lattner@cs.uiuc.edu

Tutorial Overview

Introduction to the running example

m LLVM C/C++ Compiler Overview
High-level view of an example LLVM compiler

m The LLVM Virtual Instruction Set
IR overview and type-system

m LLVM C++ IR and important API's
Basics, PassManager, dataflow, ArgPromaotion
m Important LLVM Tools
opt, code generator, JIT, test suite, bugpoint

m Example applications of LLVM

http://llvm.cs.uiuc.edu/ Chris Lattner — lattner@cs.uiuc.edu

LLVM tools: two flavors

m “Primitive” tools: do a single job
llvm-as: Convert from Il (text) to .bc (binary)
llvm-dis: Convert from .bc (binary) to .lI (text)
llvm-link: Link multiple .bc files together
llvm-prof: Print profile output to human readers
llvmc: Configurable compiler driver

m Aggregate tools: pull in multiple features
gccas/gccld: Compile/link-time optimizers for C/C++ FE
bugpoint: automatic compiler debugger
llvm-gcc/livm-g++: C/C++ compilers

See also: docs/ CommandGui de/

http://llvm.cs.uiuc.edu/ Chris Lattner — lattner@cs.uiuc.edu

opt tool: LLVM modular optimizer

m Invoke arbitrary sequence of passes:
Completely control PassManager from command line
Supports loading passes as plugins from .so files

opt -load foo.s0 -passl -pass2 -pass3 x.bc -0 y.bc

m Passes “register’” themselves:

61. Regi st er Opt <Si npl eAr gPronoti on> X("si npl ear gpr onoti on",
"Pronote 'by reference' argunents to 'by value'");

m From this, they are exposed through opt:

> opt -load |ibsinpleargpronote.so —help

-sccp - Sparse Conditional Constant Propagation
-si npl eargpronotion - Pronote 'by reference' argunents to 'by

-sinplifycfg - Sinplify the CFG

http://llvm.cs.uiuc.edu/ Chris Lattner — lattner@cs.uiuc.edu

Running Arg Promotion with opt

m Basic execution with ‘opt’:
opt -sinpleargpronotion in.bc -0 out. bc

Load .bc file, run pass, write out results
Use “-load filename.so” if compiled into a library
PassManager resolves all dependencies

m Optionally choose an alias analysis to use:
opt —basi caa —si npl eargpronotion (default)
Alternatively, —st eens-aa, —anders-aa, —-ds-aa,

m Other useful options available:

- st at s: Print statistics collected from the passes
-t1 me- passes: Time each pass being run, print output

http://llvm.cs.uiuc.edu/ Chris Lattner — lattner@cs.uiuc.edu

Example -stats output (gccas 176.gcc)

5052592
57489
4186
211
15943
54245
253
3952
9425
160469
208
4982
350
30156
2934
650

67

279
25395

adce

byt ecodewri t er
cfgsinmplify
const mer ge
dse

gcse

gcse

inline

i nline

i nst conbi ne

i nst conbi ne
licm

licm

| oop-unrol
mengr eg
reassoci ate
reassoci at e
scal arrepl
tailcallelim
tail duplicate

http://llvm.cs.uiuc.edu/

i nstructions renoved

basi ¢ bl ocks renoved

byt ecode bytes witten

bl ocks sinplified

gl obal constants nerged
stores del eted

| oads renoved

i nstructions renoved
functions del eted because al
functions inlined

constant folds

i nsts conbi ned

| oad insts hoisted or sunk
i nstructions hoi sted out of
| oops conpletely unrolled
alloca's pronoted

insts with operands swapped
i nsts reassoci at ed

al | ocas broken up

tail calls renoved
uncondi ti onal branches elinm nated

call ers found

| oop

Chris Lattner — lattner@cs.uiuc.edu

Example -time-passes (gccas 176.gcc)

... Pass execution timing report ...

---User Time---

--System Time-- --User+System

16.2400 (23.0%) 0.0000 (0.0%) 16.2400 (22.9%) 16.2192(22.9%) Global Common Subexpression Elimination
11.1200 (15.8%) 0.0499 (13.8%) 11.1700 (15.8%) 11.1028 (15.7%) Reassociate expressions

0.0300 (8.3%) 6.5799 (9.3%) 6.5824 (9.3%) Bytecode Writer

0.0100 (2.7%) 3.2599 (4.6%) 3.2140(4.5%) Scalar Replacement of Aggregates

0.0499 (13.8%) 3.0800 (4.3%) 3.0382(4.2%) Combine redundant instructions

6.5499 (9.3%)
3.2499 (4.6%)
3.0300 (4.3%)
2.6599 (3.7%)
2.1600 (3.0%)
2.1600 (3.0%)
1.6600 (2.3%)
1.4999 (2.1%)
1.5000 (2.1%)
1.3200 (1.8%)
1.2700 (1.8%)
1.0300 (1.4%)
0.9499 (1.3%)
0.9399 (1.3%)
0.9199 (1.3%)
0.9600 (1.3%)
0.5600 (0.7%)

0.0100 (2.7%)
0.0300 (8.3%)
0.0100 (2.7%)
0.0000 (0.0%)
0.0100 (2.7%)
0.0000 (0.0%)
0.0000 (0.0%)
0.0000 (0.0%)
0.0000 (0.0%)

2.6699 (3.7%)
2.1900 (3.0%)
2.1700 (3.0%)
1.6600 (2.3%)
1.5099 (2.1%)
1.5000 (2.1%)
1.3200 (1.8%)
1.2700 (1.7%)
1.0300 (1.4%)

2.7339(3.8%) Dead Store Elimination

2.1924 (3.1%) Function Integration/Inlining

2.1125(2.9%) Sparse Conditional Constant Propagation
1.6389 (2.3%) Aggressive Dead Code Elimination
1.4462 (2.0%) Tail Duplication

1.4410(2.0%) Post-Dominator Set Construction
1.3722 (1.9%) Canonicalize natural loops

1.2717 (1.7%) Merge Duplicate Global Constants
1.1418 (1.6%) Combine redundant instructions

0.0400 (11.1%) 0.9899 (1.4%) 0.9979 (1.4%) Raise Pointer References
0.0100 (2.7%) 0.9499 (1.3%) 0.9688(1.3%) Simplify the CFG

0.0300 (8.3%) 0.9499 (1.3%) 0.8993(1.2%) Promote Memory to Register
0.0000 (0.0%) 0.9600 (1.3%) 0.8742(1.2%) Loop Invariant Code Motion
0.0000 (0.0%) 0.5600 (0.7%) 0.6022(0.8%) Module Verifier

http://llvm.cs.uiuc.edu/

Chris Lattner — lattner@cs.uiuc.edu

Analyze tool: Visualize analysis results

m Print most LLVM data structures

Dominators, loops, alias sets, CFG, call graph, ...
Converts most LLVM data structures to ‘dot’ graphs

CFG0rman’ ioacton

http://llvm.cs.uiuc.edu/

(VEMUBWIOUD 605) ((VWDEMHIBMW +05) (

WUEFWHIBWY * 0 5

build_lateral

build_bra @

Call Graph

C J T 0\9H WM [/ VB
(URMUBMBID +,05)
N | | P,
(WEPKDWK +,05) DO
kl | L) L[
[WWPAKDWBHQW DUD +,05 j Qgﬁm
(WHPWDWKBHOM +,05)
N | |)
YRG 8,
External IXQPWRP DQ

Chris Lattner — lattner@cs.uiuc.edu

LLC Tool: Static code generator

m Compiles LLVM - native assembly language

Currently for X86, Sparc, PowerPC (others in alpha)
llc file.bc -0 file.s -march=x86
as file.s —o file.o

m Compiles LLVM - portable C code

|lc file.bc -0 file.c -march=c
gcc —c file.c —o file.o

m Targets are modular & dynamically loadable:
|lc —load libarmso file.bc -march=arm

http://llvm.cs.uiuc.edu/ Chris Lattner — lattner@cs.uiuc.edu

The LLVM Code Generator

m Target independent:

Driven by an algorithm independent target description
m Data layout, Register, Instruction, Scheduling, ...

m Basic code generator layout:

Machine | | Register | | Instr s file
SSA Opts | | Allocator Sched '

_/
Target Specific
4 algorithms 2rated)

Trivial to change and add| | ,yailable today tOr'S
llc -regalloc=foo

(] Targ ets i Scheduling, Peephole, ? PEIEE

Exposes all target-specific special support for FP stack
details about a function

(by hand for o_w1

See also: docs/CodeGenerator.html

(calling conventions, etc)
http://llvm.cs.uiuc.edu/ Chris Lattner — lattner@cs.uiuc.edu

Porting LLVM to a new target

m LLVM targets are very easy to write:

Anecdotal evidence suggests 1 week for a basic port

m ... for someone familiar with the target machine and
compilers in general, but not with LLVM

m LLVM targets are written with “tablegen” tool
Simple declarative syntax
Designed to factor out redundancy in target desc

m Some C++ code is still required

Primarily in the instruction selector
Continuing work to improve this

See also: docs/TableGenFundamentals.html and WritingAnLLVMBackend.html

http://llvm.cs.uiuc.edu/ Chris Lattner — lattner@cs.uiuc.edu

LLI Tool: LLVM Execution Engine

m LLI allows direct execution of .bc files
E.g.: Ili grep.bc -i foo *.c
m LLIuses aJust-In-Time compiler if available:

Uses same code generator as LLC
m Optionally uses faster components than LLC

Emits machine code to memory instead of “.s” file
JIT Is a library that can be embedded in other tools

m Otherwise, it uses the LLVM interpreter:
Interpreter is extremely simple and very slow
Interpreter is portable though!

http://llvm.cs.uiuc.edu/ Chris Lattner — lattner@cs.uiuc.edu

C and C++ Program Test Suite

m Large collection of programs and benchmarks:

Standard suites (e.g. SPEC 95/2000, Olden, Ptrdist,
McCat, Stanford, Freebench, Shootout...)

Individual programs: sgefa, siod, sim, pi, povray, ...
Proprietary suites (e.g. SPEC) require suite source
m Consistent build environment:
Easy add hooks to build for profiling/instrumentation
Easy to get performance numbers from entire test suite
m Entire test suite is checked every night:
Hosted on Linux,Solaris,FreeBSD on X86,Sparc & PPC

See also: docs/ Test i ngGui de. ht

http://llvm.cs.uiuc.edu/ Chris Lattner — lattner@cs.uiuc.edu

Integrated Debugging Tools

m Extensive assertions throughout code
Find problems as early as possible (close to source)

m LLVM IR Verifier: Checks modules for validity

Checks type properties, dominance properties, etc.
Automatically run by opt
Problem found?: print an error message and abort

m LLVM IR Leak Detector

Efficient and simple “garbage collector” for IR objects
Ensure IR objects are deallocated appropriately

http://llvm.cs.uiuc.edu/ Chris Lattner — lattner@cs.uiuc.edu

The Bugpoint automated bug finder

m Simple idea: automate ‘binary’ search for bug
Bug isolation: which passes interact to produce bug
Test case reduction: reduce input program

m Optimizer/Codegen crashes:

Throw portion of test case away, check for crash
m If S0, keep going
m Otherwise, revert and try something else

Extremely effective in practice
m Simple greedy algorithms for test reduction
m Completely black-box approach

See also: docs/ Bugpoint . ht ni

http://llvm.cs.uiuc.edu/ Chris Lattner — lattner@cs.uiuc.edu

Debugging Miscompilations

m Optimizer miscompilation:
Split testcase in two, optimize one. Still broken?
Keep shrinking the portion being optimized
m Codegen miscompilation:
Split testcase in two, compile one with CBE, broken?
Shrink portion being compiled with non CBE codegen
m Code splitting granularities:

Take out whole functions
Take out loop nests
Take out individual basic blocks

http://llvm.cs.uiuc.edu/ Chris Lattner — lattner@cs.uiuc.edu

How well does this thing work?

m Extremely effective:

Can often reduce a 100K LOC program and 60
passes to a few basic blocks and 1 pass in 5 minutes

Crashes are found much faster than miscompilations
= NO need to run the program to test a reduction

m Interacts with integrated debugging tools
Runtime errors are detected faster
m Limitations:

Program must be deterministic
= ... or modified to be so

Finds “a” bug, not “the” bug

http://llvm.cs.uiuc.edu/ Chris Lattner — lattner@cs.uiuc.edu

Tutorial Overview

Introduction to the running example

m LLVM C/C++ Compiler Overview
High-level view of an example LLVM compiler

m The LLVM Virtual Instruction Set
IR overview and type-system

m LLVM C++ IR and important API's
Basics, PassManager, dataflow, ArgPromaotion
m Important LLVM Tools
opt, code generator, JIT, test suite, bugpoint

m Example applications of LLVM

http://llvm.cs.uiuc.edu/ Chris Lattner — lattner@cs.uiuc.edu

Use Case 1: Edge or Path Profiling

Goal: Profiling Research or PGO

m Implementation:
FunctionPass: LLVM-to-LLVM transformation
Instrumentation: Use CFG, intervals, dominators
Code generation: Use C or any native back end
Profile feedback: Use profile query interface

m Core extensions needed: none

m Major LLVM Benefits
Language-independence, CFG, very simple IR

http://llvm.cs.uiuc.edu/ Chris Lattner — lattner@cs.uiuc.edu

Use Case 2: Alias Analysis

Goal: Research on new alias analysis algorithms

m Implementation:
ModulePass: Whole-program analysis pass on LLVM
Use type information; SSA,; heap/stack/globals
Compare SimpleAA, Steensgard’s, Andersen’s, DSA
Evaluate many clients via AliasAnalysis interface

m Core extensions needed: none

m Major LLVM Benefits
Language-independence, type info, SSA, DSA, IPO
AliasAnalysis interface with many pre-existing clients

http://llvm.cs.uiuc.edu/ Chris Lattner — lattner@cs.uiuc.edu

Use Case 3: LDS Prefetching

Goal: Prefetching linked data structures

m Implementation:
ModulePass: Link-time LLVM-to-LLVM transformation

Code transformations: use type info, loop analysis,
unrolling, prefetch insertion

Data transformations (e.g,. adding history pointers):
use stronq type info from DSA, IPO

m Core extensions needed:
Prefetch operation: add as intrinsic (in progress)

m Major LLVM Benefits
m Language-independence, type info, DSA, IPO

http://llvm.cs.uiuc.edu/ Chris Lattner — lattner@cs.uiuc.edu

Use Case 4: Language Front end

Goal: Use LLVM to implement a new language

m Implementation:
Parser (say to AST), Semantic checking
AST-to-LLVM translator

m Core extensions needed: depends
High-level type system is omitted by design

m Major LLVM Benefits
Low-level, but powerful type system
Very simple IR to generate (e.g., compare GCC RTL)
Extensive global and IP optimization framework
JIT engine, native back-ends, C back-end

http://llvm.cs.uiuc.edu/ Chris Lattner — lattner@cs.uiuc.edu

Use Case 5: JIT Compiler

Goal: Write JIT compiler for a bytecode language

m Implementation:
Extend the LLVM JIT framework

Simple JIT: Fast translation from bytecode to LLVM
(then use LLVM JIT + GC)

Optimizing JIT: Language-specific optimizations + fast
translation (then use LLVM optimizations, JIT, GC)

m Core extensions needed: none in general

m Major LLVM Benefits
Compact, typed, language-independent IR
Existing JIT framework and GC

http://llvm.cs.uiuc.edu/ Chris Lattner — lattner@cs.uiuc.edu

Use Case 6: Architecture Research

Goal: Compiler support for new architectures

m Implementation:
Add new machine description (or modify one)
Add any new LLVM-to-LLVM transformations

m Core extensions needed: depends on goals
Imminent features: modulo sched; vector ops

m Major LLVM Benefits
Low-level, typed, machine-independent IR
Explicit register/memory architecture
Aggressive mid-level and back-end compiler framework
Full-system evaluation: applications, libraries, even OS

http://llvm.cs.uiuc.edu/ Chris Lattner — lattner@cs.uiuc.edu

Five point LLVM Review

m Extremely simple IR to learn and use

1-to-1 correspondence between I, .bc, and C++ IR
Very positive user reactions

m Powerful and modular optimizer
Easy to extend, or just use what is already there
m Clean and modular code generator
Easy to retarget, easy to replace/tweak components
m Many “productivity tools” (bugpoint, verifier)
Get more done, quicker!
m Active dev community, good documentation
Mailing lists, IRC, doxygen, extensive docs

http://llvm.cs.uiuc.edu/ Chris Lattner — lattner@cs.uiuc.edu

Get started with LLVM!

m Download latest release or CVS:
http://llvm.cs.uiuc.edu/releases/

m Follow the “Getting Started Guide”:

http://llvm.cs.uiuc.edu/docs/GettingStarted.html
Walks you through install and setup
Lots of other docs available in “docs” directory
Join us on mailing lists and IRC

m Happy hacking!

http://llvm.cs.uiuc.edu/ Chris Lattner — lattner@cs.uiuc.edu

