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LLVM Compiler System

m The LLVM Compiler Infrastructure
Provides reusable components for building compilers
Reduce the time/cost to build a new compiler
Build static compilers, JITs, trace-based optimizers, ...

m The LLVM Compiler Framework

End-to-end compilers using the LLVM infrastructure

C and C++ are robust and aggressive:
m Java, Scheme and others are in development

Emit C code or native code for X86, Sparc, PowerPC
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Three primary LLVM components

m The LLVM Virtual Instruction Set

The common language- and target-independent IR
Internal (IR) and external (persistent) representation

m A collection of well-integrated libraries

Analyses, optimizations, code generators, JIT
compiler, garbage collection support, profiling, ...

m A collection of tools built from the libraries

Assemblers, automatic debugger, linker, code
generator, compiler driver, modular optimizer, ...
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Tutorial Overview

Introduction to the running example

m LLVM C/C++ Compiler Overview
High-level view of an example LLVM compiler

m The LLVM Virtual Instruction Set
IR overview and type-system

m LLVM C++ IR and important API's
Basics, PassManager, dataflow, ArgPromaotion
m Important LLVM Tools
opt, code generator, JIT, test suite, bugpoint

m Example applications of LLVM
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Running example: arg promotion

Consider use of by-reference parameters:
Int callee(const int &X) { Int callee(const int *X) {
return X+1; :{> return *X+1; // memory load
} }
int caller() { compiles to | Int caller() {
return callee(4); Int tmp; // stack object
} tmp = 4; / memory store
return callee(&tmp);
We want: !
Int callee(int X .. :
return >§+1; " VEliminated load in callee
) v Eliminated store in caller
int caller() {

return callee(4); | v'Eliminated stack slot for ‘tmp’

}
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Why Is this hard?

m Requires interprocedural analysis:
Must change the prototype of the callee
Must update all call sites = we must know all callers
What about callers outside the translation unit?
m Requires alias analysis:
Reference could alias other pointers in callee

Must know that loaded value doesn’t change from
function entry to the load

Must know the pointer is not being stored through
m Reference might not be to a stack object!
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The LLVM C/C++ Compiler

m From the high level, it Is a standard compiler:

Compatible with standard makefiles
Uses GCC 3.4 C and C++ parser

C file —|llvmgcc —’.ofile\

llvm linker | — executable

: L
C++ file = | llvmg++ |~ .o file

Compile Time Link Time

m Distinguishing features:
Uses LLVM optimizers, not GCC optimizers
.0 files contain LLVM IR/bytecode, not machine code
Executable can be bytecode (JIT'd) or machine code
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Looking into events at compile-time

C file ™| llvmgcc | — .o file C++ file | llvmg++ | — .o file

E R
Lowers

Dead Global Elimination, IP Constant Propagation, Dead
Argument Elimination, Inlining, Reassociation, LICM, Loop
Opts, Memory Promotion, Dead Store Elimination, ADCE, ...
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Looking into events at link-time

.0 file\

L
.0 flle

20 LLVM Analysis &
Optimization Passes

llvm linker | — executable

—

» bc file for LLVM JIT

Native executable

Native

Optionally “internalizes”: executable
marks most functions as “llc —march=c” "gcc”

internal, to improve IPO \_ -

Y
Link in native .o files
Perfect place for argument |‘7 and libraries here
promotion optimization!
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Goals of the compiler design

m Analyze and optimize as early as possible:
Compile-time opts reduce modify-rebuild-execute cycle
Compile-time optimizations reduce work at link-time
(by shrinking the program)

m All IPA/IPO make an open-world assumption
Thus, they all work on libraries and at compile-time
“Internalize” pass enables “whole program” optzn

m One IR (without lowering) for analysis & optzn

Compile-time optzns can be run at link-time too!
The same IR is used as input to the JIT
IR design is the key to these goals!
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Goals of LLVM IR

m Easy to produce, understand, and define!

m Language- and Target-Independent

AST-level IR (e.g. ANDF, UNCOL) is not very feasible
= Every analysis/xform must know about ‘all’ languages

m One IR for analysis and optimization

IR must be able to support aggressive IPO, loop opts,
scalar opts, ... high- and low-level optimization!

m Optimize as much as early as possible
Can’t postpone everything until link or runtime
No lowering in the IR!
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LLVM Instruction Set Overview #1

m Low-level and target-independent semantics
RISC-like three address code
Infinite virtual register set in SSA form
Simple, low-level control flow constructs
Load/store instructions with typed-pointers

m IR has text, binary, and in-memory forms

| oop:
% .1 =phi int [ O, b0 ], [ %.2, % oop ]
%A Addr = getelenentptr float* %A, Iint %.1
call void %sun(fl oat %A Addr, %pair* %)
) %.2 = add int %.1, 1
surf( &A1, &P); %np.4 =setlt int %.1, %N
br bool % np.4, |abel % oop, |abel %outl oop
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LLVM Instruction Set Overview #2

m High-level information exposed in the code
Explicit dataflow through SSA form
Explicit control-flow graph (even for exceptions)
Explicit language-independent type-information
Explicit typed pointer arithmetic
m Preserve array subscript and structure indexing

| oop:
% .1 =phi int [ O, b0 ], [ %.2, % oop ]
%A Addr = getelenentptr float* %A, Iint %.1
call void %sun(fl oat %A Addr, %pair* %)
) %.2 = add int %.1, 1
surf( &A1, &P); %np.4 =setlt int %.1, %N
br bool % np.4, |abel % oop, |abel %outl oop
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LLVM Type System Details

m The entire type system consists of:
Primitives: void, bool, float, ushort, opaque, ...
Derived: pointer, array, structure, function
No high-level types: type-system is language neutral!

m Type system allows arbitrary casts:
Allows expressing weakly-typed languages, like C
Front-ends can implement safe languages
Also easy to define a type-safe subset of LLVM

See also: docs/ LangRef . ht
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Lowering source-level types to LLVM

m Source language types are lowered:

Rich type systems expanded to simple type system

Implicit & abstract types are made explicit & concrete
m Examples of lowering:

References turn into pointers: 7& > T*

Complex numbers: conmplex float - { float, float }

Bitfields: struct X { int Y:4; int Z2; } > { int}

Inheritance: class T: S{ int XX } 2> { S, int }

Methods: class T { void foo(): } > void foo(T*)

m Same idea as lowering to machine code
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LLVM Program Structure

m Module contains Functions/GlobalVariables
Module is unit of compilation/analysis/optimization

m Function contains BasicBlocks/Arguments
Functions roughly correspond to functions in C

m BasicBlock contains list of instructions

Each block ends in a control flow instruction

m Instruction Is opcode + vector of operands
All operands have types
Instruction result is typed
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Our example,

compiled to LLVM

}

Int callee(const int *X) {

}

Int caller() {
Int T; /| on stack
T =4; /| store

return *X+1; // load

return callee(&T);

Linker “internalizes”
most functions in most
cases

Internal int %callee(int* %X) {
%tmp.1 = load int* %X
%tmp.2 = add int %tmp.1, 1
ret int %tmp.2

}

Int %caller() {

%T = allocaint

store int 4, int* %T

%tmp.3 = call int %callee(int* %T)
ret int %tmp.3

}

http://llvm.cs.uiuc.edu/
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Our example, desired transformation

Internal int %callee(int* %X) {
%tmp.1 = load int* %X
%tmp.2 = add int %tmp.1, 1
ret int %tmp.2

}

Int %caller() {

%T = allocaint

store int 4, int* %T

%tmp.3 = call int %callee(int* %T)
ret int %tmp.3

}

Internal int %callee(int %X.val) {
%tmp.2 = add int %X.val, 1
ret int %tmp.2
}
Int %caller() {
%T = allocaint
store int 4, int* %T
%imp.1l =load int* %T
%tmp.3 = call int %callee(%tmp.1)
ret int %tmp.3

Other transformation
(-mem2req) cleans up
the rest

http://llvm.cs.uiuc.edu/

o

Int %caller() {
%tmp.3 = call int %callee(int 4)
ret int %tmp.3

}
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LLVM Coding Basics

m Written in modern C++, uses the STL.:
Particularly the vector, set, and map classes

m LLVM IR is almost all doubly-linked lists:

Module contains lists of Functions & GlobalVariables
Function contains lists of BasicBlocks & Arguments
BasicBlock contains list of Instructions

m Linked lists are traversed with iterators:

Function *M = ...
for (Function::iterator I = M>begin(); | !'= M>end(); ++l) {
Basi cBl ock &BB = *|;

See also: docs/ProgrammersManual.html
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LLVM Pass Manager

m Compiler is organized as a series of ‘passes’.
Each pass is one analysis or transformation

m Four types of Pass:

ModulePass: general interprocedural pass
CallGraphSCCPass: bottom-up on the call graph
FunctionPass: process a function at a time
BasicBlockPass: process a basic block at a time

m Constraints imposed (e.g. FunctionPass):
FunctionPass can only look at “current function”
Cannot maintain state across functions

See also: docs/ Wi ti ngAnLLVMPass. ht i
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Services provided by PassManager

m Optimization of pass execution:
Process a function at a time instead of a pass at a time

Example: If F, G, H are three functions in input pgm:
*FFFFGGGGHHHH" not “FGHFGHFGHFGH"

Process functions in parallel on an SMP (future work)
m Declarative dependency management:

Automatically fulfill and manage analysis pass lifetimes

Share analyses between passes when safe:
= e.g. “DominatorSet live unless pass modifies CFG”

m Avoid boilerplate for traversal of program

See also: docs/ Wi ti ngAnLLVMPass. ht i
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Pass Manager + Arg Promotion #1/2

m Arg Promotion is a CallGraphSCCPass:

Naturally operates bottom-up on the CallGraph
= Bubble pointers from callees out to callers

24: #include "Ilvm Cal | G aphSCCPass. h"
47: struct SinpleArgPronotion : public Call GaphSCCPass {

m Arg Promotion requires AliasAnalysis info

To prove safety of transformation
m Works with any alias analysis algorithm though

48: virtual void get Anal ysi sUsage( Anal ysi sUsage &AU) const {

AU. addRequi r ed<Al i asAnal ysi s>(); [l Get aliases
AU. addRequi r ed<Tar get Dat a>() ; /] Get data | ayout
Cal | G aphSCCPass: : get Anal ysi sUsage(AU); // Get Call Graph

}
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Pass Manager + Arg Promotion #2/2

m Finally, implement r unOnSCC (line 65):

bool Si npl eArgPronoti on: :
runOnSCC( const std::vector<Call GaphNode*> &SCC) ({

bool Changed = fal se, Local Change;
do { /| lterate until we stop promoting from this SCC.

Local Change = fal se;
/| Attempt to promote arguments from all functions in this SCC.

for (unsigned i =0, e = SCC.size(); | = e;, ++i)
Local Change | = Pronot eArgunent s(SCCi]);
Changed | = Local Change; // Remember that we changed something.
} while (Local Change);
return Changed, /'l Passes return true if something changed.

}

static int foo(int **P) { E static int foo(int P_val val val) {

return ***p; return P_val val val;

http://llvm.cs.uiuc.edu/
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LLVM Dataflow Analysis

mLLVMIR IS In SSA form:

use-def and def-use chains are always available
All objects have user/use info, even functions

m Control Flow Graph is always available:
Exposed as BasicBlock predecessor/successor lists
Many generic graph algorithms usable with the CFG

m Higher-level info implemented as passes:
Dominators, CallGraph, induction vars, aliasing, GVN, ...

See also: docs/ Progr ammer sManual . ht ni
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Arg Promotion: safety check #1/4

#1: Function must be “internal” (aka “static”)

88: if ('F || !'F->haslnternal Linkage()) return fal se;

#2: Make sure address of F is not taken
In LLVM, check that there are only direct calls using F

99:. for (Value::use iterator U = F->use_begin();
U !'= F->use_end(); ++Ul) {
Call Site CS = CallSite::get(*Ul);
If (!'CS.getlnstruction()) // "Taking the address" of F.
return fal se;

#3: Check to see if any args are promotable:

114: for (unsigned i = 0; i != PointerArgs.size(); ++i)
I f ('isSaf eToPronot eAr gunent (Poi nterArgs[i]))
Poi nt er Args. erase( Poi nter Args. begi n() +i ) ;
i f (PointerArgs.enpty()) return false; // noargs promotable
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Arg Promotion: safety check #2/4

#4: Argument pointer can only be loaded from:
No stores through argument pointer allowed!

/1 Loop over all uses of the argument (use-def chains).
138: for (Value::use iterator U = Arg->use_begin();
U !'= Arg->use_end(); ++Ul) {
/1 If the user is a load:
I f (Loadlnst *LI = dyn_cast<Loadlnst>(*Ul)) {
/1 Don't modify volatile loads.

If (LI->sVolatile()) return fal se;
Loads. push_back(LI);
} else {

return false: // Not aload.
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Arg Promotion: safety check #3/4

#5: Value of “*P” must not change in the BB
We move load out to the caller, value cannot change!

‘ !

lgzie] P
Il Get AliasAnalysis inplenentation fromthe pass manager.
156: AliasAnal ysis &AA = get Anal ysi s<Al i asAnal ysi s>();

[/ Ensure *P is not nodified fromstart of block to |oad
169: if (AA canlnstructionRangeMdi fy(BB->front(), *Load,
Arg, LoadSi ze))
return false; [/ Pointer is invalidated!

See also: docs/ Al i asAnal ysi s. ht i
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Arg Promotion: safety check #4/4

#6: “*P” cannot change from Fn entry to BB

175: for (pred_iterator Pl = pred begin(BB), E = pred _end(BB);
Pl '=E ++Pl) /| Loop over predecessors of BB.
/| Check each block from BB to entry (DF search on inverse graph).
for (idf _iterator<BasicBlock*> | = idf_begin(*Pl);
| '= idf _end(*Pl); ++I)
/' Might *P be modified in this basic block?
I f (AA. canBasi cBl ockModi fy(**1, Arg, LoadSize))
return false;
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Arg Promotion: xform outline #1/4

#1: Make prototype with new arg types: #197
Basically just replaces ‘int*’ with ‘int’ in prototype
#2: Create function with new prototype:

214: Function *NF = new Function(NFTy, F->getLinkage(),
F- >get Nane()) ;
F- >get Parent () ->get FunctionList().insert(F, NF);

#3: Change all callers of F to call NF:

/[ If there are uses of F, then calls to it remain.
221: while (!F->use_enpty()) {
/] Get a caller of F.
Call Site CS = Call Site::get(F->use_back());
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Arg Promotion: xform outline #2/4

#4:. For each caller, add loads, determine args
Loop over the args, inserting the loads in the caller

220: std::vector<Val ue*> Args;

226: Call Site::arg _iterator Al = CS.arg_begin();

for (Function::aiterator I = F->abegin(); | !'= F->aend();
++1, ++Al)
i f (!ArgsToPronote. count(l)) /1 Unmodified argument.
Ar gs. push_back(*Al);
el se { /'l Insert the load before the call.
Loadl nst *LI = new Loadlnst(*Al, (*Al)->getNane()+".val",

Call); // Insertion point
Args. push_back(Ll);

}
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Arg Promotion: xform outline #3/4

#5: Replace the call site of F with call of NF

/| Create the call to NF with the adjusted arguments.
242: Instruction *New = new Calllnst(NF, Args, "", Call);

/1 If the return value of the old call was used, use the retval of the new call.
I f (!Call->use_enpty())
Cal | ->repl aceAl | UsesWt h( New) ;

/| Finally, remove the old call from the program, reducing the use-count of F.
Cal |l ->get Parent()->getlnstList().erase(Call);

#6: Move code from old function to new Fn

259: NF->get Basi cBl ockLi st ().splice(NF >begin(),
F- >get Basi cBl ockLi st());
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Arg Promotion: xform outline #4/4

#7: Change users of F's arguments to use NF’s

264: for (Function::aiterator | = F->abegin(), |12 = NF->abegin();
| '= F->aend(); ++I, ++I2)
I f (!'ArgsToPronote.count(1)) { // Not promoting this arg?

| - >repl aceAl | UsesWth(l2); /' | Use new arg, not old arg.
} else {
while (!l->use empty()) { /'] Only users can be loads.
Loadl nst *LI = cast <Loadl nst >(I->use_back());

LI ->repl aceAl |l UsesWth(l2);
LI ->get Parent ()->getlnstList().erase(Ll);

}
}

#8: Delete old function:

286: F->get Parent ()->get FunctionList().erase(F);
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LLVM tools: two flavors

m “Primitive” tools: do a single job
llvm-as: Convert from Il (text) to .bc (binary)
llvm-dis: Convert from .bc (binary) to .lI (text)
llvm-link: Link multiple .bc files together
llvm-prof: Print profile output to human readers
llvmc: Configurable compiler driver

m Aggregate tools: pull in multiple features
gccas/gccld: Compile/link-time optimizers for C/C++ FE
bugpoint: automatic compiler debugger
llvm-gcc/livm-g++: C/C++ compilers

See also: docs/ CommandGui de/
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opt tool: LLVM modular optimizer

m Invoke arbitrary sequence of passes:
Completely control PassManager from command line
Supports loading passes as plugins from .so files

opt -load foo.s0 -passl -pass2 -pass3 x.bc -0 y.bc

m Passes “register’” themselves:

61. Regi st er Opt <Si npl eAr gPronoti on> X("si npl ear gpr onoti on",
"Pronote 'by reference' argunents to 'by value'");

m From this, they are exposed through opt:

> opt -load |ibsinpleargpronote.so —help

-sccp - Sparse Conditional Constant Propagation
-si npl eargpronotion - Pronote 'by reference' argunents to 'by

-sinplifycfg - Sinplify the CFG
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Running Arg Promotion with opt

m Basic execution with ‘opt’:
opt -sinpleargpronotion in.bc -0 out. bc

Load .bc file, run pass, write out results
Use “-load filename.so” if compiled into a library
PassManager resolves all dependencies

m Optionally choose an alias analysis to use:
opt —basi caa —si npl eargpronotion (default)
Alternatively, —st eens-aa, —anders-aa, —-ds-aa,

m Other useful options available:

- st at s: Print statistics collected from the passes
-t1 me- passes: Time each pass being run, print output
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Example -stats output (gccas 176.gcc)

5052592
57489
4186
211
15943
54245
253
3952
9425
160469
208
4982
350
30156
2934
650

67

279
25395

adce

byt ecodewri t er
cfgsinmplify
const mer ge
dse

gcse

gcse

inline

i nline

i nst conbi ne

i nst conbi ne
licm

licm

| oop-unrol
mengr eg
reassoci ate
reassoci at e
scal arrepl
tailcallelim
tail duplicate

http://llvm.cs.uiuc.edu/

i nstructions renoved

basi ¢ bl ocks renoved

byt ecode bytes witten

bl ocks sinplified

gl obal constants nerged
stores del eted

| oads renoved

i nstructions renoved
functions del eted because al
functions inlined

constant folds

i nsts conbi ned

| oad insts hoisted or sunk
i nstructions hoi sted out of
| oops conpletely unrolled
alloca's pronoted

insts with operands swapped
i nsts reassoci at ed

al | ocas broken up

tail calls renoved
uncondi ti onal branches elinm nated

call ers found

| oop
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Example -time-passes (gccas 176.gcc)

... Pass execution timing report ...

---User Time---

--System Time-- --User+System

16.2400 ( 23.0%) 0.0000 ( 0.0%) 16.2400 ( 22.9%) 16.2192(22.9%) Global Common Subexpression Elimination
11.1200 ( 15.8%) 0.0499 (13.8%) 11.1700 (15.8%) 11.1028 ( 15.7%) Reassociate expressions

0.0300 ( 8.3%) 6.5799 ( 9.3%) 6.5824 ( 9.3%) Bytecode Writer

0.0100 ( 2.7%) 3.2599 ( 4.6%) 3.2140( 4.5%) Scalar Replacement of Aggregates

0.0499 (13.8%) 3.0800 ( 4.3%) 3.0382( 4.2%) Combine redundant instructions

6.5499 ( 9.3%)
3.2499 ( 4.6%)
3.0300 ( 4.3%)
2.6599 ( 3.7%)
2.1600 ( 3.0%)
2.1600 ( 3.0%)
1.6600 ( 2.3%)
1.4999 ( 2.1%)
1.5000 ( 2.1%)
1.3200 ( 1.8%)
1.2700 ( 1.8%)
1.0300 ( 1.4%)
0.9499 ( 1.3%)
0.9399 ( 1.3%)
0.9199 ( 1.3%)
0.9600 ( 1.3%)
0.5600 ( 0.7%)

0.0100 ( 2.7%)
0.0300 ( 8.3%)
0.0100 ( 2.7%)
0.0000 ( 0.0%)
0.0100 ( 2.7%)
0.0000 ( 0.0%)
0.0000 ( 0.0%)
0.0000 ( 0.0%)
0.0000 ( 0.0%)

2.6699 ( 3.7%)
2.1900 ( 3.0%)
2.1700 ( 3.0%)
1.6600 ( 2.3%)
1.5099 ( 2.1%)
1.5000 ( 2.1%)
1.3200 ( 1.8%)
1.2700 ( 1.7%)
1.0300 ( 1.4%)

2.7339( 3.8%) Dead Store Elimination

2.1924 ( 3.1%) Function Integration/Inlining

2.1125( 2.9%) Sparse Conditional Constant Propagation
1.6389 ( 2.3%) Aggressive Dead Code Elimination
1.4462 ( 2.0%) Tail Duplication

1.4410( 2.0%) Post-Dominator Set Construction
1.3722 ( 1.9%) Canonicalize natural loops

1.2717 ( 1.7%) Merge Duplicate Global Constants
1.1418 ( 1.6%) Combine redundant instructions

0.0400 (11.1%) 0.9899 ( 1.4%) 0.9979 ( 1.4%) Raise Pointer References
0.0100 ( 2.7%) 0.9499 ( 1.3%) 0.9688( 1.3%) Simplify the CFG

0.0300 ( 8.3%) 0.9499 ( 1.3%) 0.8993( 1.2%) Promote Memory to Register
0.0000 ( 0.0%) 0.9600 ( 1.3%) 0.8742( 1.2%) Loop Invariant Code Motion
0.0000 ( 0.0%) 0.5600 ( 0.7%) 0.6022( 0.8%) Module Verifier
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Analyze tool: Visualize analysis results

m Print most LLVM data structures

Dominators, loops, alias sets, CFG, call graph, ...
Converts most LLVM data structures to ‘dot’ graphs

CFG0rman’ ioacton

http://llvm.cs.uiuc.edu/
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LLC Tool: Static code generator

m Compiles LLVM - native assembly language

Currently for X86, Sparc, PowerPC (others in alpha)
llc file.bc -0 file.s -march=x86
as file.s —o file.o

m Compiles LLVM - portable C code

|lc file.bc -0 file.c -march=c
gcc —c file.c —o file.o

m Targets are modular & dynamically loadable:
|lc —load libarmso file.bc -march=arm
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The LLVM Code Generator

m Target independent:

Driven by an algorithm independent target description
m Data layout, Register, Instruction, Scheduling, ...

m Basic code generator layout:

Machine | | Register | | Instr s file
SSA Opts | | Allocator Sched '

_/
Target Specific
4 algorithms  2rated)

Trivial to change and add| | ,yailable today tOr'S
llc -regalloc=foo

(] Targ ets i Scheduling, Peephole, ? PEIEE

Exposes all target-specific special support for FP stack
details about a function

(by hand for o_w1

See also: docs/CodeGenerator.html

(calling conventions, etc)
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Porting LLVM to a new target

m LLVM targets are very easy to write:

Anecdotal evidence suggests 1 week for a basic port

m ... for someone familiar with the target machine and
compilers in general, but not with LLVM

m LLVM targets are written with “tablegen” tool
Simple declarative syntax
Designed to factor out redundancy in target desc

m Some C++ code is still required

Primarily in the instruction selector
Continuing work to improve this

See also: docs/TableGenFundamentals.html and WritingAnLLVMBackend.html
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LLI Tool: LLVM Execution Engine

m LLI allows direct execution of .bc files
E.g.: Ili grep.bc -i foo *.c
m LLIuses aJust-In-Time compiler if available:

Uses same code generator as LLC
m Optionally uses faster components than LLC

Emits machine code to memory instead of “.s” file
JIT Is a library that can be embedded in other tools

m Otherwise, it uses the LLVM interpreter:
Interpreter is extremely simple and very slow
Interpreter is portable though!
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C and C++ Program Test Suite

m Large collection of programs and benchmarks:

Standard suites (e.g. SPEC 95/2000, Olden, Ptrdist,
McCat, Stanford, Freebench, Shootout...)

Individual programs: sgefa, siod, sim, pi, povray, ...
Proprietary suites (e.g. SPEC) require suite source
m Consistent build environment:
Easy add hooks to build for profiling/instrumentation
Easy to get performance numbers from entire test suite
m Entire test suite is checked every night:
Hosted on Linux,Solaris,FreeBSD on X86,Sparc & PPC

See also: docs/ Test i ngGui de. ht
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Integrated Debugging Tools

m Extensive assertions throughout code
Find problems as early as possible (close to source)

m LLVM IR Verifier: Checks modules for validity

Checks type properties, dominance properties, etc.
Automatically run by opt
Problem found?: print an error message and abort

m LLVM IR Leak Detector

Efficient and simple “garbage collector” for IR objects
Ensure IR objects are deallocated appropriately
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The Bugpoint automated bug finder

m Simple idea: automate ‘binary’ search for bug
Bug isolation: which passes interact to produce bug
Test case reduction: reduce input program

m Optimizer/Codegen crashes:

Throw portion of test case away, check for crash
m If S0, keep going
m Otherwise, revert and try something else

Extremely effective in practice
m Simple greedy algorithms for test reduction
m Completely black-box approach

See also: docs/ Bugpoint . ht ni
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Debugging Miscompilations

m Optimizer miscompilation:
Split testcase in two, optimize one. Still broken?
Keep shrinking the portion being optimized
m Codegen miscompilation:
Split testcase in two, compile one with CBE, broken?
Shrink portion being compiled with non CBE codegen
m Code splitting granularities:

Take out whole functions
Take out loop nests
Take out individual basic blocks
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How well does this thing work?

m Extremely effective:

Can often reduce a 100K LOC program and 60
passes to a few basic blocks and 1 pass in 5 minutes

Crashes are found much faster than miscompilations
= NO need to run the program to test a reduction

m Interacts with integrated debugging tools
Runtime errors are detected faster
m Limitations:

Program must be deterministic
= ... or modified to be so

Finds “a” bug, not “the” bug
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Tutorial Overview

Introduction to the running example

m LLVM C/C++ Compiler Overview
High-level view of an example LLVM compiler

m The LLVM Virtual Instruction Set
IR overview and type-system

m LLVM C++ IR and important API's
Basics, PassManager, dataflow, ArgPromaotion
m Important LLVM Tools
opt, code generator, JIT, test suite, bugpoint

m Example applications of LLVM
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Use Case 1: Edge or Path Profiling

Goal: Profiling Research or PGO

m Implementation:
FunctionPass: LLVM-to-LLVM transformation
Instrumentation: Use CFG, intervals, dominators
Code generation: Use C or any native back end
Profile feedback: Use profile query interface

m Core extensions needed: none

m Major LLVM Benefits
Language-independence, CFG, very simple IR
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Use Case 2: Alias Analysis

Goal: Research on new alias analysis algorithms

m Implementation:
ModulePass: Whole-program analysis pass on LLVM
Use type information; SSA,; heap/stack/globals
Compare SimpleAA, Steensgard’s, Andersen’s, DSA
Evaluate many clients via AliasAnalysis interface

m Core extensions needed: none

m Major LLVM Benefits
Language-independence, type info, SSA, DSA, IPO
AliasAnalysis interface with many pre-existing clients
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Use Case 3: LDS Prefetching

Goal: Prefetching linked data structures

m Implementation:
ModulePass: Link-time LLVM-to-LLVM transformation

Code transformations: use type info, loop analysis,
unrolling, prefetch insertion

Data transformations (e.g,. adding history pointers):
use stronq type info from DSA, IPO

m Core extensions needed:
Prefetch operation: add as intrinsic (in progress)

m Major LLVM Benefits
m Language-independence, type info, DSA, IPO
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Use Case 4: Language Front end

Goal: Use LLVM to implement a new language

m Implementation:
Parser (say to AST), Semantic checking
AST-to-LLVM translator

m Core extensions needed: depends
High-level type system is omitted by design

m Major LLVM Benefits
Low-level, but powerful type system
Very simple IR to generate (e.g., compare GCC RTL)
Extensive global and IP optimization framework
JIT engine, native back-ends, C back-end
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Use Case 5: JIT Compiler

Goal: Write JIT compiler for a bytecode language

m Implementation:
Extend the LLVM JIT framework

Simple JIT: Fast translation from bytecode to LLVM
(then use LLVM JIT + GC)

Optimizing JIT: Language-specific optimizations + fast
translation (then use LLVM optimizations, JIT, GC)

m Core extensions needed: none in general

m Major LLVM Benefits
Compact, typed, language-independent IR
Existing JIT framework and GC
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Use Case 6: Architecture Research

Goal: Compiler support for new architectures

m Implementation:
Add new machine description (or modify one)
Add any new LLVM-to-LLVM transformations

m Core extensions needed: depends on goals
Imminent features: modulo sched; vector ops

m Major LLVM Benefits
Low-level, typed, machine-independent IR
Explicit register/memory architecture
Aggressive mid-level and back-end compiler framework
Full-system evaluation: applications, libraries, even OS
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Five point LLVM Review

m Extremely simple IR to learn and use

1-to-1 correspondence between I, .bc, and C++ IR
Very positive user reactions

m Powerful and modular optimizer
Easy to extend, or just use what is already there
m Clean and modular code generator
Easy to retarget, easy to replace/tweak components
m Many “productivity tools” (bugpoint, verifier)
Get more done, quicker!
m Active dev community, good documentation
Mailing lists, IRC, doxygen, extensive docs

http://llvm.cs.uiuc.edu/ Chris Lattner — lattner@cs.uiuc.edu




Get started with LLVM!

m Download latest release or CVS:
http://llvm.cs.uiuc.edu/releases/

m Follow the “Getting Started Guide”:

http://llvm.cs.uiuc.edu/docs/GettingStarted.html
Walks you through install and setup
Lots of other docs available in “docs” directory
Join us on mailing lists and IRC

m Happy hacking!
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